Control of DC voltage in Multi-Terminal HVDC Transmission (MTDC) Systems

نویسنده

  • MOHAMMAD NAZARI
چکیده

With recent advances in power electronic technology, High-Voltage Direct Current (HVDC) transmission system has become an alternative for transmitting power especially over long distances. Multi-Terminal HVDC (MTDC) systems are proposed as HVDC systems with more than two terminals. These systems can be geographically wide. While in AC grids, frequency is a global variable, in MTDC systems, DC voltage can be considered as its dual. However, unlike frequency, DC voltage can not be equal across the MTDC system. Control of DC voltage in MTDC systems is one of the important challenges in MTDC systems. Since the dynamic of MTDC system is very fast, DC voltage control methods cannot rely only on remote information. Therefore, they can work based on either local information or a combination of local and remote information. In this thesis, first, the MTDC system is modeled. One of the models presented in this thesis considers only the DC grid, and effects of the AC grids are modeled with DC current sources, while in the other one, the connections of the DC grid to the AC grids are also considered. Next, the proposed methods in the literature for controlling the DC voltage are described and in addition to these methods, some control methods are proposed to control the DC voltage in MTDC system. These control methods include two groups. The first group (such as Multi-Agent Control methods) uses remote and local information, while the second group (such as Sliding Mode Control and H∞ control) uses local information. The proposed multi-agent control uses local information for immediate response, while uses remote information for a better fast response. Application of Multi-Agent Control systems leads to equal deviation of DC voltages from their reference values. Using remote information leads to better results comparing to the case only local information is used. Moreover, the proposed methods can also work in the absence of remote information. When AC grid is considered in the modeling, the MTDC system has a non-linear dynamic. Sliding Mode Control, a non-linear control method with high disturbance rejection capability, which is non-sensitive to the parameter variations, is applied to the MTDC system. It controls the DC voltage very fast and with small or without overshoot. Afterward, a static state feedback H∞ control is applied to the system which minimizes the voltage deviation after a disturbance and keeps the injected power of the terminals within the limits. Finally, some case studies are presented and the effectiveness of the proposed methods are shown. All simulations have been done in MATLAB and SIMULINK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control , Dynamics and Operation of Multi - terminal VSC - HVDC Transmission Systems

In recent years, there has been an increased development and deployment of renewable energy resources to meet the ever increasing electric power demand and to limit the use of fossil fuels. This has spurred offshore wind farm development, particularly in the North Sea, due to the vast offshore wind energy potential. Large scale wind farms in the North Sea pose grid integration challenges such a...

متن کامل

Improved Adaptive Droop Control Design for Optimal Power Sharing in VSC-MTDC Integrating Wind Farms

With the advance of insulated gate bipolar transistor (IGBT) converters, Multi-Terminal DC (MTDC) based on the voltage-source converter (VSC) has developed rapidly in renewable and electric power systems. To reduce the copper loss of large capacity and long distance DC transmission line, an improved droop control design based on optimal power sharing in VSC-MTDC integrating offshore wind farm i...

متن کامل

Minimizing DC System Loss in Multi-Terminal HVDC Systems through Adaptive Droop control

In this paper, droop control of inverters in a multi-terminal HVDC (MTDC) system is designed to achieve minimum DC system loss while preventing converter overvoltage. Circuit analysis along with optimization analysis is first conducted to seek the optimal droop control gains. Contingent operating conditions are then considered. The droop control gains will adapt to achieve minimum loss as well ...

متن کامل

Multi-terminal HVDC grids with inertia mimicry capability

The high-voltage multi-terminal dc (MTDC) systems are foreseen to experience an important development in the next years. Currently, they have appeared to be a prevailing technical and economical solution for harvesting offshore wind energy. In this study, inertia mimicry capability is added to a voltage-source converter-HVDC grid-side station in an MTDC grid connected to a weak ac grid, which c...

متن کامل

DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC) grids based on an optimal power flow (OPF) procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014